Pure Mathematics 2

Exercise 4B

1 a $4!=4 \times 3 \times 2 \times 1$

$$
=24
$$

b 9 ! $=9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$

$$
=362880
$$

c $\frac{10!}{7!}=\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}$
$=\frac{3628800}{5040}$ or $10 \times 9 \times 8$ since the $7!$ on numerator and denominator cancel
$=720$
d $\frac{15!}{13!}=\frac{15 \times 14 \times 13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}$
$=\frac{1307674368000}{6227020800}$ or 15×14 because the $13!$ cancels
$=210$

2 a $\binom{4}{2}=\frac{4!}{2!2!}$
$=\frac{4 \times 3 \times 2 \times 1}{2 \times 1 \times 2 \times 1}$
$=\frac{4 \times 3}{2 \times 1}$
$=6$
b $\binom{6}{4}=\frac{6!}{4!2!}$
$=\frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1 \times 2 \times 1}$
$=\frac{6 \times 5}{2 \times 1}$
$=15$
c ${ }^{6} C_{3}=\frac{6!}{3!3!}$

$$
\begin{aligned}
& =\frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 3 \times 2 \times 1} \\
& =\frac{6 \times 5 \times 4}{3 \times 2 \times 1} \\
& =20
\end{aligned}
$$

Pure Mathematics 2

2 d $\binom{5}{4}=\frac{5!}{4!1!}$
$=\frac{5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1 \times 1}$
$=\frac{5}{1}$
$=5$
e ${ }^{10} C_{8}=\frac{10!}{8!2!}$

$$
\begin{aligned}
& =\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \times 2 \times 1} \\
& =\frac{10 \times 9}{2 \times 1} \\
& =45
\end{aligned}
$$

f $\binom{9}{5}=\frac{9!}{5!4!}$
$=\frac{9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{5 \times 4 \times 3 \times 2 \times 1 \times 4 \times 3 \times 2 \times 1}$
$=\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1}$
$=126$
3 a $\binom{15}{6}=5005$
b ${ }^{10} C_{7}=120$
c $\binom{20}{10}=184756$
d $\binom{20}{17}=1140$
e ${ }^{14} C_{9}=2002$
f ${ }^{18} C_{5}=8568$

4 The r th entry in the nth row of Pascal's triangle is given by ${ }^{n-1} C_{r-1}$.
a ${ }^{5-1} C_{2-1}={ }^{4} C_{1}$
b ${ }^{6-1} C_{3-1}={ }^{5} C_{2}$

Pure Mathematics 2

4 c $={ }^{6} C_{2}$
d ${ }^{7-1} C_{4-1}={ }^{6} C_{3}$
5 5th number on the 12th row $={ }^{12-1} C_{5-1}={ }^{11} C_{4}=330$
6 a ${ }^{11-1} C_{4-1}={ }^{10} C_{3}=120$

$$
{ }^{11-1} C_{5-1}={ }^{10} C_{4}=210
$$

b The coefficients are $1,10,45,120,210, \ldots$
The term in x^{3} is $120(1)^{7}(2 x)^{3}=960 x^{3}$.
Coefficient $=960$
7 a ${ }^{14-1} C_{4-1}={ }^{13} C_{3}=286$
${ }^{14-1} C_{5-1}={ }^{13} C_{4}=715$
b The coefficients are $1,13,78,286,715, \ldots$
The term in x^{4} is $715(1)^{9}(3 x)^{4}=57915 x^{4}$.
Coefficient $=57915$
$8 \quad\binom{20}{10} 0.5^{20}={ }^{20} C_{10} 0.5^{20}$

$$
\begin{aligned}
& =184756 \times 0.5^{20} \\
& =0.1762 \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

Whilst this seems a low probability, there is more chance of the coin landing on 10 heads than any other number of heads.
$9 \quad \mathbf{a} \quad{ }^{n} C_{1}=\frac{n!}{1!(n-1)!}=\frac{n \times(n-1) \times(n-2) \times \ldots \times 2 \times 1}{1 \times(n-1) \times(n-2) \times(n-3) \times \ldots \times 2 \times 1}=n$
b $\quad{ }^{n} C_{2}=\frac{n!}{2!(n-2)!}=\frac{n \times(n-1) \times(n-2) \times \ldots \times 2 \times 1}{1 \times 2 \times(n-2) \times(n-3) \times \ldots \times 2 \times 1}=\frac{n(n-1)}{2}$
$10 \quad\binom{50}{13}=\frac{50!}{13!a!}$
$\binom{50}{13}=\frac{50!}{13!37!}$
$a=37$
$11 \quad\binom{35}{p}=\frac{35!}{p!18!}$

$$
\binom{35}{17}=\frac{35!}{17!18!}
$$

$p=17$

Pure Mathematics 2

Challenge

a $\quad{ }^{10} C_{3}=\frac{10!}{3!7!}=120$
${ }^{10} C_{7}=\frac{10!}{7!3!}=120$
b $\quad{ }^{14} C_{5}=\frac{14!}{5!9!}=2002$
${ }^{14} C_{9}=\frac{14!}{9!5!}=2002$
c The two answers for part \mathbf{a} are the same and the two answers for part \mathbf{b} are the same.
d ${ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$ and ${ }^{n} C_{n-r}=\frac{n!}{(n-r)!r!}$ because $\frac{n!}{(n-r)!(n-(n-r))!}$ and $(n-(n-r))=r$ As $\frac{n!}{r!(n-r)!}=\frac{n!}{(n-r)!r!},{ }^{n} C_{r}={ }^{n} C_{n-r}$

